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Thermoelastic stresses in ribbons and tubes 
grown from the melt by the Stepanov method 

A. V. Z H D A N O V ,  L. P. N IKOLAEVA,  S. N. ROSSOLENKO 
Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, 
Moscow district, Russia 

Ribbons and tubes grown from the melt by the Stepanov technique have a wide range of technical 
applications. Sapphire ribbons are used as substrates in microelectronics and sapphire tubes are 
used as gas-discharge balloons in laser engineering, fine chemical technology and high-vacuum 
equipment. Practice has shown that misorientation angles of small-angle boundaries in sapphire 
crystals should not exceed several degrees because an increase in the misorientation angles 
between blocks drastically lowers the strength and worsens the dielectric properties of these 
crystals. One of the main mechanisms of formation of the block structure of melt-grown crystals, 
including shaped sapphire crystals, is dislocation polygonization that begins when the dislocation 
density exceeds a certain critical value. In turn, dislocations are formed under deformations due to 
thermal stresses. Calculations of thermal fields in crystals and the corresponding ,thermoelastic 
stress fields can be used as an input to improve and optimize the growth process. The dependence 
of thermoelastic stresses in ribbons and tubes on the technological parameters has been 
calculated. 
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Thermal diffusivity of the melt 
Thermal diffusivity of the crystal 
Thermal conductivity of the melt 
Thermal conductivity of the crystal cr 
Velocity vector of the melt ~1 
Velocity vector of the growing crystal ~2 
Crystal pulling rate g 
Latent heat of fusion CrLG 
Density of the melt a 
Density of the crystal d~o 
Interface normal vector ~t 
Crystal-melt interface normal vector hi 
Interface tangential vector h2 
Sided crystal-melt tangential vector cp~ 
Melting temperature E 
Ambient temperature v 
Temperature at the bottom of the meniscus g 

P 

Crystal temperature at the top of the 
meniscus 
Normal vector at lateral surfaces of the crys- 
tal and meniscus 
Stefan-Boltzmann constant 
Emissivity of the meniscus lateral surface 
Emissivity of the crystal lateral surface 
Acceleration due to gravity 
Melt gas surface tension 
Die half dimension 
Angle of growth 
Thermal expansion coefficient 
Heat transfer coefficient of the melt 
Heat transfer coefficient of the crystal 
Heat capacity 
Young's modulus 
Poisson's coefficient 
Melt kinematic viscosity 
Pressure in the melt 

1. I n t r o d u c t i o n  
Ribbons and tubes grown from the melt by the 
Stepanov technique have a wide range of technical 
applications. In particular, sapphire ribbons are used 
as substrates in microelectronics and sapphire tubes 
are used as gas-discharge balloons in laser engineer- 
ing, fine chemical technology arid high-vacuum equip- 
ment. Practice has shown that misorientation angles 
of small-angle boundaries in sapphire crystals should 
not exceed several degrees because an increase in the 
misorientation angles between blocks drastically 
lowers the strength and worsens the dielectric proper- 

ties of these crystals. One of the main mechanisms of 
formation of the block structure of melt-grown crys- 
tals, including shaped sapphire crystals, is dislocation 
polygonization that begins when the dislocation dens- 
ity exceeds a certain critical value [1, 2]. In turn, 
dislocations are formed under deformations due to 
thermal stresses [3-5]. Calculations of thermal fields 
in crystals and the corresponding thermoelastic stress 
fields can be used as an input to improve and optimize 
the growth process [6]. Empirical models of high- 
temperature inelastic deformation of a crystal during 
shaped growth from the melt have been developed 
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recently [7]. However, such models require complic- 
ated simulations and powerful computers. In the pres- 
ent work, thermoelastic stresses in crystals as a func- 
tion of the technological parameters have been cal- 
culated. 

For the ribbons, a two-dimensional problem of 
thermoelasticity is solved with allowance for the stres- 
ses arising in a crystal when it is growing from the 
melt. The temperature field is supposed to be inde- 
pendent of the deformations induced. Then the prob- 
lem can be divided into two stages. The first step is to 
find the temperature field; it is a Stefan-type problem 
of phase transition in the melt-crystal system, and 
consists of finding temperatures for liquid and solid 
phases, the shape of the interface boundary, the profile 
curve of the melt meniscus and, finally, the thickness of 
the growing ribbon. 

The ab initio numerical solution of this problem 
includes taking, as an input, the initial thickness, 
shape and position of interface and thermal field in 
a crystal and melt. Then, the following iteration pro- 
cedure is applied. 

1. The thermal and velocity fields are determined to 
solve the heat transfer and  Stokes equations and their 
boundary conditions, by trying various shapes and 
positions of the interface and crystal thickness. 

2. The shape and position of the interface are cor- 
rected until the sequence of iterations (1) and (2) con- 
verges and yields a temperature on the interface equal 
to the melting temperature of a material. 

3. The ribbon thickness is iterated until the con- 
straint of the constant angle of growth is satisfied. 

After the temperature field in the crystal has been 
found, the corresponding thermoelastic stressed state 
is determined. The motion of the melt in the capillary 
and in the meniscus is described by Stokes equations. 
The resulting differential equations were solved by the 
finite-element method in the appropriate class of func- 
tions. 

The analogous problem of thermoelasticity should 
be considered, and for the case of tubes. Similar 
Stefan-type and Stokes problems should be solved, 
but for different geometry. The additional thermal and 
capillary boundary conditions on the inner crystal- 
meniscus lateral surface for equations written in a cy- 
lindrical coordinate system, have to be introduced. 
However, this model requires vast computing re- 
sources and much computational time. Therefore, we 
consider a crystal area only with the planar interface. 
The thickness of tube was determined according to 
experimental data, namely, by visual observation of 
the growth process. In addition, the parameters of the 
growth process, such as pull rate and ambient temper- 
ature, were obtained experimentally. The heat ex- 
change of the tube with the environment during 
growth depends on whether the growing tube is in the 
screened thermal zone or partially sticks out of this 
zone beyond a certain length. Both cases have been 
considered. The case of a semi-infinite tube in the 
one-dimensional approximation of the temperature 
field is given [8]. In the present work, we have allowed 
for the influence of the upper end of the tube, which 
may be important in determination of the stress distri- 
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butions. The developed approach allows calculation 
of the thermoelastic stresses from experimental ambi- 
ent temperatures along the tube surfaces. 

Despite the apparent similarity, we treat the two 
problems in a somewhat different framework. We 
would like to emphasize that often it is more effective 
not to start from scratch, but to proceed from a certain 
intermediate stage using, as an input, some experi- 
mental data. We have already succesfully applied this 
combined and fruitful approach to different problems. 

2. Thermoe las t ic  stresses in r ibbons 
2.1. Mathematical model 
A diagram of the crystallization process and the 
choice of the coordinate system are illustrated in Fig. 
1. Indices 1 and 2 denote the quantities referring to the 
melt and crystal, respectively. The distribution of tem- 
perature T1 (x, y) in the region D1 w D2, involving the 
melt in the meniscus and the crystal, is described by 
the thermal conduction equation 

a,kT, = (V~.VT,) (x ,y)eD, ,  i = 1,2 (1) 

where A is the Laplace operator and V is a gradient 
operator. At the interface H(x), the Stefan condition 
should be fulfilled 

k , (n 'VT~)  - k2(n. VT2) = pzV0aHf(1 + Hx2) -1/2 

(2a) 
T1Ex, H(x)] = T2[x ,H(x)]  = Tm 

- b <<. x <~ b,  y = H ( x )  (2b) 
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Figure 1 A diagram of ribbon growth and the grid of the finite- 
element method. 



Heat transfer from the melt and crystal to the neigh- 
bouring medium at temperature Te(y), which depends 
on the height only, is accomplished by convection and 
radiation 

ki 8T,uc - hi(7} - -  T e )  -t- ( y s i ( r  r - -  T 4 ) ,  

i = 1, 2, (3) 

at FI and Fz. 
In addition, at the bottom of the melt meniscus 

(y = 0) and at the top of the crystal (y = 1) the follow- 
ing temperatures are preset 

Tl(x, 0) = T ~ = constant - a ~ < x ~ < a  (4a) 

T2(x,l) = T ~ = constant - b ~ < x ~ < b  (4b) 

The profile curve of the liquid meniscus f(y) should 
satisfy the Laplace capillary equation 

d [ ( 1  + [df/dy)2] 1 P2g(Y + Ho) = CYLG~yy 

f(0) = a (5) 

and the joint of the interface boundary of the crystal 
lateral surface with the meniscus profile curve at the 
triple point should be related to the meniscus height 
H(b) by means of the condition related to constancy of 
the angle of growth 

d f = tg qbo (6) 
d y  y = H(b) 

To determine the field of the melt velocities in the 
meniscus we consider the motion of liquid in the 
capillary channel, assuming that inside at a distance 
greater than distance H* from its edge, this motion is 
described by the well-known Navier-Stokes equation 
for the case of flow between two planes. For 
V~ = (ul, vl) we have the following system of equa- 
tions and boundary conditions for the above region 

VP 
I~AV~ - + f  f = (0, -g) (7) 

Pl 

div V~ = 0 (8) 

and 

Vln = VoEl + (H'x)2]  1/2 Vlt = 0 (9) 

at the interface boundary y = H(x) 

V~, = 0 [(r, DV~),s] = 0 (lOa) 

on the profile curve of meniscus x =f(y). Here 

~x (10b) DV~ = l l / e u z  e / ) , \  

is the deformation rate tensor. On the walls of the 
capillary channel and top surface of the die 

V~ = 0 (11) 

At sufficiently long distance H* from top of the die, the 
distribution of melt velocities has the following form 

3 Vo P2 1 - (12) 
U 1 ~- 0, /)1 = 2 0 i  

This set of equations and boundary conditions 1-12 
define the problem with unknown boundaries H(x) 
a n d f ( y )  for the temperature field in the melt-crystal 
region and the field of the melt velocities in the menis- 
cus. After it has been solved, the region occupied by 
the crystal and the distribution of temperature T 2 in it 
are found. Then the problem of thermoelasticity can 
be formulated. 

Introduce the stress function, F, by the formulas 

82 F ~2 F ~2F 
CYx - -  s - -  "~xy" "~" ~ y 2  ' ~X  2 ' ~ x ~ y  

(13) 

In the case of plane strain state, F satisfies the relation 

E 
AZF --  - -  ~ t A T 2  (X, y )  E D 2 (14) 

1 - v  

The boundary conditions for F are formulated by 
requiring that there are no surface forces. This can be 
written out as follows 

~F 
F = 0 , ~  = 0 (15) 

at the crystal boundary. The list of notation is given at 
the beginning of the paper. 

2.2. The  f i n i t e - e l e m e n t  m e t h o d  
Solutions of the Stokes problem and the problem of 
thermoelasticity in terms of the stream and stress 
functions, respectively, should satisfy the biharmonic 
equations. The convenient numerical approach is the 
finite-element method. While solving the problem of 
heat transfer it is convenient to use the rectangular 
elements for approximating the solution [9-11] using 
the appropriate set of basis functions. However, in 
typical problems the overall region is not rectangular, 
and mapping it on to the rectangular leads to the 
undue complexity of the biharmonic equation and 
considerable complications in construction of the 
matrix coefficients of the Galerkin system of equations 
[12]. Therefore, we use the division of the region into 
the combined set of rectangles and triangles, as shown 
in Fig. 1. Hermitian bicubic intrpolating polynomials 
are used for the rectangles and Birkhoff tricubic poly- 
nomials for triangles, respectively [13]. 

2.3. Numerical analys is  
The non-linear system of Galerkin algebraic equations 
was solved by the Newtonian method, which requires 
adequate initial approximations. The procedure we 
have adopted was as follows: first,-we fix the con- 
venient value of b = bo and solve the problem. The 
solution gives the interface boundary H(x) and the 
height H(b) of the melt meniscus at the triple point. 
These data are already sufficient for determining angle 
qb between the generating ribbon and the profile curve 
of the meniscus at this point. Next we check whether 
or not the constraint 6 on ~b(b) is fulfilled. The 
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Figure 2 The distr ibutions of thermoelast ic stresses: (a) normal  stress cry, (b) normal  stress •y, (c) tangential  stress zx~. 
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practical procedure is to plot qb(b) against b and deter- 
mine the sought half-thickness graphically by drawing 
the straight line qb = qbo and finding the intersection 
with the curve dp(b). This procedure could be quite 
time consuming. Still another problem is related to the 
ambiguity. Provided the set (T,D, V)- the  temper- 
ature, the region occupied by the melt and crystal and 
melt velocities-represents the solution of Problems 
1-12, then under various physical parameters no solu- 
tion, or two solutions, or three solutions exist, which 
satisfy all the conditions of the problem formulated. 

The choice of the actual value of b should be made 
on the basis of studying the stability of the crystalliza- 
tion process. In any case we believe b to be found and 
region D 2, occupied by the crystal, determined. The 
stress function F is found in the manner described in 
Section 1.2. 

Using Formula 13 we calculate then normal and 
tangent stresses ~ ,  Cry, ~xy. Fig. 2 shows the surface of 
stresses determined over the calculation region. It is 
seen that stresses are concentrated at the crystalliza- 
tion l'ront and on the lateral surface of the ribbon. 
Normal stress, ~x is maximum at the centre of the 
ribbon in the crystallization front and drops dras- 
tically towards the upper end of the crystal. The max- 
imal value of normal stress at b = 1 mm under the 
standard growth conditions in the order of 70 MPa. 
Normal stress, cy r, is maximum on the lateral surface 

of the ribbon near the crystallization front, and by an 
order of magnitude less than the maximal value of ~x. 

The tangential stress is maximum at some distance 
from the crystallization front, and its magnitude is in 
the order of maximal oy. In the case of plane deforma- 
tion there also arises normal stress Oz, associated with 
the stresses along other axes 

~z = V(O'x + Oy) - -  ~tET2 (16) 

Because the top surface of a crystal is free of stresses, 
then, according to the St Venant condition, thermal 
stress in the axial direction is determined by the rela- 
tion 

cr; = Ecz + c;z (17) 

Here e= is the constant longitudinal strain. Strain az is 
chosen so that the resultant of the stresses or; acting on 
the top of the crystal should turn to zero. It is evalu- 
ated from 

~z - EID2I cy=dxdy (18) 
2 

Here ID2[ is the area of region D2. 

3. Thermoe las t i c  stresses in tubes 
3.1. Mathemat ica l  model  
We consider the process of crystallization from the 
melt involving obtaining tubes of inner radius R1 and 
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outer radius R2. The pulling rate, Vo, and the temper- 
ature regime of the thermal unit are assumed to be 
known from experimental data. Owing to the small- 
ness of the pulling rate the problem concerned with 
the determination of the temperature field in the crys- 
tal will be considered in the quasi-stationary approx- 
imation. We introduce the cylindrical system of coord- 
inates r, z of which the z-axis is directed along the 
symmetry axis of the tube and its origin is the centre of 
the lower tube end. Then, the temperature T satisfies 
the following thermal conduction equation 

~T 
k2AT - V~ ~z - 0 (19) 

At the inner (r -- R1) and outer (r -- R2)  lateral surface 
we preset the heat exchange with the ambient environ- 
ments having the temperatures O1 and O2 

where 

01 = 

8T 
k2~r = h z ( T -  01)r=R~' 

8T 02 ) - k z ~ r  = h E ( T -  ~=R: 

f Z 0 
T o + ~ ; (T~ - T~  

o o T O l _  TOl , Ts - T2 
[ - -  l~ z + 1 - 1 "  ' 

I Z 0 
r~ + F(T~ - T~ 

- -  + r ~  l - r ~  l* 02 = T ~ _ TO z 

I -- 1" 1 - l* ' 

(21b) 

Here l* is the screen height, and T o and T o are the 
ambient temperatures inside and outside the tube at 
z = 0, analogously T ~ T o and T ~ T ~ are the ambient 

(20) 

O<<.z ~ l *  

l*<~z<~l 

(21a) 

O <~ z <~ l* 

l* <~z<~ l 

~T* | ,=R1 k2 ~r - h2(T* - 

__ k2 ~T*sr - h2(T* - 0 2  r=R2 (24) 

This function that also satisfies the equation AT* = 0 
may be written as 

T*(r,z)  = A( z ) ln r  + C(z) (25) 

where the coefficients A(z) and C(z) have the form 

A(z) = ~ 0 2  -- O1 , C(Z) • O1W2 q- O2W1 
W 1 -}- W 2 W1 q- W 2 

1 
wl - L lnR1,  

R1 

h2 - 
k2 

(26a) 

1 
w2 = - -  + XlnR2, 

R2 

(26b) 

For temperature T1 we shall then have a thermal 
conduction equation, but with uniform boundary con- 
ditions at the inner and outer tube lateral surfaces. To 
determine T1, a method o f  variables separation is 
applicable according to which the T1 solution is given 
as 

Tl(r, z) = ~ Zk(z)Xk(r) (27) 
k=l 

Here functions Xk(r) are determined by equalities 

Xk _ Dk(r) Dk = D(I~-Yr~ 
II D~  II' \RE I 

" "N f " k  r'~ 
= J~ J +Y t "k )  o~-~2 2 J (28) 

where Yo, No are zeros of first and second order Bessel 
functions, respectively. 

The eigenvalues, ~tk, are the solutions of the al- 
gebraic equation 

~ t J l ( l a )  - KJo(~t ) ,  .Nl(J.t) -- KNo(~t) 

g N l \  R2 / + ~cNo g ~  

= 0 (29) 

temperatures at z = t* and z = l, respectively. These 
temperatures can be directly measured in the process 
of the crystal growth. So, the ambient temperatures 
are preset by the piecewise linear functions. Besides, at 
the solid-liquid interface z = 0 and at the upper tube 
end z = l the temperatures 

T(r, O) = Tin, T(r, l) = To, R1 ~ F ~ R2 (22) 

are given. 
The solution of Problems 19-22 is given as the sum 

T(r,z)  = T*(r ,z)  + Tl (r , z )  (23) 

where the T* function is such that it satisfies the 
boundary conditions only 

and the coefficients 7(lak) are equal to 

~tkd10ak) - ~:do(~tk) 
v ( ~ )  = - (30) 

The square of the norm of functions Da equals 

2~k L kxKz/ \ Kz//A 

- ( 3 1 )  
R2 

The functions ZR satisfy the differential equation 

Z'k' - ZZ'k--  ;%Zk = Ck, 

\ g 2 J  z - k2 

PIOk Ij 2 - 

(32) 
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with boundary conditions 

Zk(O) = (Tin - T*(O),Xk). = ak, 

Zk(I) = (To - T*(1),Xk)o = bk (33) 

By (.,.)0 we designate the scalar product in the space 
L~(0, l) with weight 0 = r, The righthand parts of 
Equation 32 Ck have the form 

fC~ 1) if z~<l* 
Ck -- C(kS)8(Z -- I*) + [Ck(2) if z > l* (34) 

where 5(z) is the Dirac delta function. 

c~' II Dkllh~, E0q(~zlnR2 + 1) + ~:13,]D(gk) 

+ I ~  gkRl~'R2] 

(35) i = 1,2 

T ~ + r o _ T ~ _ T o 
~1 = ~" 

I*(W 1 -1- W2) ' 

(T ~ - T~ + (7"2 - T~ 
131 = (36a) l*(wl + w2) 

T O + T O _ T O - T  o 
~.2 = % ( I -  l*)(wl + w2) 

( r  ~ - T ~  + ( T  ~ - r 2 ) w ~  
132 = ( 3 6 b )  

( I -  l*)(wl + w2) 

Coefficients C(k a) are calculated according to Formula 
35, only instead of al one has to take (a2 - %) and 
instead of 13i, (132 - 131), and the value of Z should be 
equal to 1. The boundary values ak and bk are cal- 
culated in implicit form and equal to 

]'DkHhkl { [ R1 [ RI"~-] 

R1 { R l \  
"J- 71 K D ( ~ k ) l n i 2 - t -  K ~ 2 D k ~ k ~ 2 ) l n i  1 

R1 

T~ + T~ 
T m -  

w 1 -~- W 2 

where 

51 = 

r o _ T o 
y~ = - h (38) 

W 1 -{- W 2 

Coefficients bk are calculated from the same for- 
mulas as ak, only instead of 81 and Y1 one has to take 
82 and u Quantities 52 and Y2 are calculated from the 
formulas 

T~ w z + T~ w l T ~ _ T ~ 
52 = TO - -  , 72 = - -  ~ - -  

W 1 --~ W 2 W1 -~- W 2 

(39) 

And finally, the functions Zk(Z) using the above ac- 
cepted symbols, should be written as 

Zk(Z) = Z~ ~ - ZP ~ + C~3)Gk(Z, l*) (40a) 

z ? '  : ak fexpzz /2shr l~(?z! / (shq~)  1 

+ b k [ e x p ~ s h ~ - / ( s h ~ )  1, 

rig = (Z 2 + 4~.k) 1/2 (40b) 

12expZ(Z21*!/(qkSh~) 1 

Ish~-~-shYh('2 l*~) z <~ l* 

X[sh-~k(l?Z)sh qf*_ z> l* 

Gk(Z, l*) = 

and Z~k 1~ is equal to 

(40c) 

[expZ_~/(hkSh~)]{shqk(l 2 z) 

shrlkZ~exp - Z/*FX shrlk(1- I *) xC~ 1, + ~ - I  ~ [ . - ~ k  " 2 

chrlk('2 l*)]  - e x p  -2Xz[ rh rlk(l--- 

- - chr l k ( l ? z ' ] }  C•') - s h q ~  { ( ) e x p - ~  

• kn~Zshq~(l--2 l*) chrlk(12-/*)] 

+ e x p ( - 7 ~ ) }  C(k2)N,Z<<. l* (41a) 

.,, _ 

+ """ .-Z rex'L . + "hV) 

ex - Z  h qkl .Cp) + p - - ~ k ~ k k  s + ch 

.nkzf / -  x&Cx .nk(;- z) 
- ' " T  t e x P t , , - - T ) L ~  ' "  2 - 

ch.,,; z,]+ exp.}., O, 
x z > l*. (41b) 

In order to calculate the thermoelastic stress-de- 
formed state we represent the tube as a circular cylin- 
drical shell of a constant thickness. We designate the 
shell thickness as h = R 2 -  RI, R = (R1 + R2)/2 is 
the middle surface radius, u, 03 are axial and radial 
displacements of the middle surface, respectively, and 
cy m and ~ ,  are meridianal and radial normal stresses. 

The thermal stresses "O" m and cy, are determined 
from the well-known equations [7] 
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E [ du d2~  ~ ] 
(3"m - -  1 - - -  v 2 dzz - Xd~z2 + v ~  - (1 § v)cztT 

(42a) 

E I d u  d2~  ~ J 
or, - 1 Z V 2 V d z  Z - -  VX dz-- T + ~ - (1 + V)~ t T 

u = 1 + v ) T - v  dz, 

[_[-d2c~ ] 
M = - D/~5-z2 + (1 § v ) o q ]  # 

(42b) 

(42c) 

The value x in Equations (42) is measured from the 
tube middle surface ( - 0.5h ~< x ~< 0.5h). 

The components of the displacement vector co sat- 
isfy the equation 

d*  m Ehcz t - d 2 ~  
dz ~ + 4k4m = ~ - T -  (1 + v)~Xt~z2 (43a) 

1 ~h/2 
? = -h i -h i2  T ( R  + x , z ) d x ,  

= h i2  

h 3 j _ h / 2  T(R + x,z)xdx (43b) 

The boundary conditions for Equations 43 are for- 
mulated for a shell having free edges, i.e. 

dM 
M - - O, z = O , l  (44) 

dz 

In Equations 42 and 43, through k, D, we designate 

3(1 - v 2) E "  h 3 
k 4 - D = 

h 2 R  2 ' 12(1 - -  V 2 )  

The materials characteristics and the process para- 
meters are tabulated elsewhere [14-16]. It should be 
noted that the chosen heat-transfer coefficient allows 
for the overall heat transfer by emission and convec- 
tion. 

3.2. Numer ica l  ana lys is  
A typical distribution of the meridianal Om and circu- 
lar % normal stresses in the longitudinal tube section 
are shown in Figs 4 and 5. The grown tube length was 
l = 15 cm, the screen height was l* = 8 cm. For clarity 
the same figures show stresses in the tubes at the same 
ambient temperatures near the liquid-solid interface 
T o , T o and near the upper tube end T o , T ~ , but in the 
absence of the screen. As seen from the figures the 
presence of the screen gives rise to a "peak" of stresses 
that drops rapidly as the distance from l* grows. 
Although the stress near l* may be significant, the 
maximal stress values in this case diminish approxim- 
ately two-fold. 

A further analysis of the stress behaviour as a func- 
tion of the heat-transfer conditions, tube thickness and 
magnitude of the middle radius will be conducted 
for the tube placed completely in the screen zone. 
An increase of the heat transfer naturally increases 
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Figure 3 Typmal distribution of the normal meridianal stress CYm: (a) without a screen, (b) with a screen. 
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Figure 4 Typical distribution of the normal circular stress c%: (a) without a screen, (b) with a screen. 
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Figure 5 Dependence of IcY,[max o n  the crystal length. 
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Figure 6 Dependence of [O'm[ma x on the crystal length. 

the temperature variations on the tube wall. Near the 
liquid-solid interface at T ~ = 2000 ~ and 
T ~ = 1950 ~ the radial temperature gradients do not 
exceed 10-15~ -1. At T ~ = 1900~ and 
T ~ = 1700 ~ the radial temperature gradients reach 
70 ~ cm-1. Accordingly, maximal circular stresses at 
the lower crystal end (liquid-solid interface) amount 
to Icy,[ = 5.12 and 16.4 kgmm -2 for a 5 cm long tube 
in either case. Near the liquid-solid interface there are 
small regions where normal stresses ~,  change rapidly 
from the negative to the positive values and after that 
they decrease down to close-to-zero values, remaining 
virtually such throughout the tube length. 

The largest I cy,[ stress values are achieved at the 
crystal ends, and largest [~m[ values near the ends on 
the tube surface; their behaviour will be considered. 

We designate the maximal [c~,l value at the 
liquid-solid interface as r c~ [m.~ that at the upper tube 

[O'm[ma x and the maximal end as [cy~[ . . . .  b t [ (3"rn [max are 
[cym[ values near the lower and upper tube ends, re- 
spectively. 

Figs 5 and 6 depict the dependences of I~[  . . . .  
[O'm[ . . . .  [O'tmlmax on the growing crystal length. 

The presented plots suggest that starting from a cer- 
tain length (3.5 cm) the [C~[m,~ and b ]O'mlma x a r e  nearly 

[s rapidly decrease. On constant, and [cy~] . . . .  t 
a small length (up to 3.5 cm) there are portions of 
a drastic increase and decrease of all the stresses, their 
magnitudes being not smaller than on lengths larger 
than 3.5 cm. Therefore, at the initial growth stage 
when the crystal is not long the influence of the cy~ and 
CYtm stresses near the upper end is essential for the 
crystal structure formation. With a tube elongation 
these stresses are relieved and, starting from a certain 
length, the influence of these stresses on the crystal 
structure will be insignificant. Consequently, the con- 
ditions of formation of the dislocation structure (with 
allowance for polygonization) and the block structure 
in the tubes, grown from a small seed rod and grown 
from a long tubular seed crystal of the same diameter 
as the obtained sample, are significantly different. 
These results suggest the conclusion that when grow- 

ing a tube it is better to start with a tubular seed not 
shorter than a certain value (in our particular case, 
3.5 cm). 

We have followed the r Cr,~lma x and ICrmlmax depend- 
ences on the middle tube radius, R, at a constant wall 
thickness, h. It was found that on increasing the 
radius, a significant increase in the ]~, Im,x stress result- 
ed, a change in I ~.lm.x being insignificant in this case. 

We have also studied the dependences of these stres- 
ses on the wall thickness h with a constant R. The 
calculations have shown that [c~, [ m a x  a n d  [ C r m  ] m a x  stres- 
ses decrease monotonically with the growing tube wall 
thickness. 

The calculation of the stresses carried out is based 
on the experimentally determined values of ~ 1  (Z) 

and | Moreover, by varying these dependences, 
one may determine the optimal temperature distribu- 
tion along the furnace in order to obtain the minimal 
stresses in the tube at heat transfer sufficient for ac- 
complishing the crystallization process. 

4 .  C o n c l u s i o n s  

1. Several different solutions may exist satisfying all 
the conditions of the Stefan problem formulated for 
the ribbon case. The choice of the actual solution 
should be made on the basis of studying the stability 
of the crystallization process. 

2. Normal stress, c~x, in the ribbons is maximal at 
the centre on the interface boundary and drops dras- 
tically in the direction of the upper end of the crystal 
and, in addition, its maximal value is by an order of 
magnitude greater than maximal values c~y, ~xy. 

3. The behaviour of the thermoelastic stresses is 
appreciably different for growing the crystal on to 
a small seed rod or a long tubular seed whose dimen- 
sion complies with the growing crystal. To grow 
a tube it is more advantageous to use a tubular seed of 
the appropriate length. 

4. An increase in the heat transfer from the tube 
surface causes an increase in the maximal circular and 
meridianal stresses. 
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5. As the length of the growing tube increases, the 
circular stress at the liquid-solid interface and the 
maximal meridianal stress near the liquid-solid inter- 
face, become stabilized. 

6. As the wall thickness is increased, the maximal 
values of the circular and meridianal stresses are 
lowered. An increase in the tube diameter with a con- 
stant wall thickness causes an increase in the circular 
stress and does not practically change the meridianal 
stress. 
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